Value Enhancement Through Collaboration

Steve Johnston
Director, External Programs and Technology Strategy
Technology Manufacturing Engineering
Intel Corporation
The Evolution of Personal Computing

- **Productivity**: 80s and 90s
- **Portability**: 00s
- **Ubiquity**: 10s

Key Terms:
- TAM
- INTEGRATION
- COST
- CYCLE TIME
Moore’s Law
It’s Still About Economics While Enabling Complex Scaling

• Higher Integration
• More Energy Efficient
• Better Performance
• Lower Cost

4,000x Faster
5,000x Less Energy/Transistor
50,000x Cheaper/Transistor

4004 (1971)
3rd Generation Intel Core Processor (2012)

Source: Intel
Technology Complexity is Increasing Costs

- **Leading Edge Fab Cost**: +575%
- **Process Development Cost**: +450%
- **Chip Design Cost**: +733%

Source: Global Foundries, BofA Merrill Lynch Global Research Estimates
Complexity Sells

• Enables the impossible to become possible

• Complexity that enables simplicity of use

• Complexity can take many forms (density, structure, data, function, ...) but ultimately people pay for use

• Delivering complexity makes our business go!
Technology Innovation and Manufacturing Efficiency Are Complimentary Growth Engines

Flawless and synchronized execution across the industry is required to deliver both in parallel

Source: Intel
Collaboration Enables Complex Supply Chain Orchestration

• Envisioned possibilities
• Inspired by the customer
• Enabled by ecosystem investment
• Delivered with supply chain precision
The Business Case for Collaboration

Hunt for Value Across **I.C.E.**

<table>
<thead>
<tr>
<th>INNOVATION</th>
<th>Product innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Business creation</td>
</tr>
<tr>
<td>CUSTOMERS</td>
<td>Cross-selling</td>
</tr>
<tr>
<td></td>
<td>Customer service</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>Cost savings</td>
</tr>
<tr>
<td></td>
<td>Better decisions</td>
</tr>
</tbody>
</table>

Source: “Collaboration”, Morten T. Hansen
450mm: Worldwide, Multi-Faceted Efforts
Collaboration In Action

Notchless wafer initiative
Component lift solutions
Reference designs for non-differentiating components

Standards
Sub-component Suppliers
Equipment and Materials Suppliers

Prototypes
EHS optimization
Streamlined installation

Utilities use rates
Effluent analysis
Emissions data
Pump idle mode
Abatement

Industry Synchronization

Device Makers

Test Bed Guidelines

• Identify focus areas / concepts
• Define pilot work
• Demo feasibility of approaches
• Drive timely adoption
450mm Technical Challenges

450 Technical Challenges
- Die to die matching

Innovative Design Improvements
- Match material/feature characteristics
- Match die level e-test results
- Match all film variability

Best In Class Equipment
- Uniform plasma density
- Improve thermal control
- Better thickness control
- Optimized pumping
- Film stress management
- Optimize vertical space
- Optimized pumping
- Platform innovations
- Common modules/parts
- Green friendly materials
- Max. recycle/reuse
- Smart idling

450mm scalar targets
- Optimized Throughput/m² ≥ 300mm
- Processing cost per wafer ≤ 300mm
- Environmental footprint ≤ 300mm

Intelligent scale-up requires **close synchronization** with 300mm HW innovation and technology roadmaps
300mm/450mm R&D Synchronization

450 mm strategy

- Strive for commonality of 300 mm and 450 mm modules, parts and software:
 - Commonality of parts
 - Ease of mix and matching
 - Sharing technological innovations
- Modular system design
- New modules are designed against design rules for future nodes
- Keep focus on cost and uptime

<table>
<thead>
<tr>
<th>Design rule</th>
<th>ArFi</th>
<th>EUV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched overlay</td>
<td>1.7 nm</td>
<td>1.7 nm</td>
</tr>
<tr>
<td>Focus uniformity</td>
<td>8 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>Throughput</td>
<td>150 wph (6"mask)</td>
<td>115 wph (>250W source)</td>
</tr>
</tbody>
</table>

EUV re-use

- Not used in 450
- 2% Re-use
- 1% Not yet defined
- 18% New
- 5% Revision
- 74% Not used in 450

Immersion re-use

- Not used in 450
- 2% Re-use
- 1% Not yet defined
- 44% New
- 15% Revision
- 33% Not used in 450

Source: Martin van den Brink, ASML, IMEC ITF US 2013
450mm Considerations

• **Cost reduction** and **capacity management** are needed to enable the continued growth of the semiconductor industry

• IC maker pilot line timing depends on:
 - Critical mass of customer interest in 450mm
 - Supplier composite readiness and equipment extendibility
 - Manufacturing ROI – cost, productivity, and capacity management

• Pre-competitive industry cooperation programs (and collaboration between them) are increasing 450mm industry readiness in a mutually cost-effective, efficient manner
New Collaboration Models Emerging to Continue Innovation and Growth

- Equity for NRE, M&A, Sub-supplier aggregation, Deterministic sourcing
- Equipment/materials co-optimization, Supply Chain Engineering, Consortia
- JVs, Multi-gen collaborations, Consortia cooperation, Universal platforms

Source: Intel
Risk Factors

Statements in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel’s expectations due to factors including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel’s products; actions taken by Intel’s competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Intel’s results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel’s products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel’s current chief executive officer plans to retire in May 2013 and the Board of Directors is working to choose a successor. The succession and transition process may have a direct and/or indirect effect on the business and operations of the company. In connection with the appointment of the new CEO, the company will seek to retain our executive management team (some of whom are being considered for the CEO position), and keep employees focused on achieving the company’s strategic goals and objectives. Intel’s results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most recent Form 10-Q, report on Form 10-K and earnings release.