New Edge Exclusion Proposal

KwangWook Lee
Global 450mm Consortium, NY
Contents

- Background
- Wafer Status
- Metrology Status
- Process Status
- Summary
Edge Exclusion?

- **SEMI M55**
 - the width X of a narrow band of wafer surface, located just inside the wafer edge, over which the values of the specified parameter do not apply

- **SEMI M59**
 - the distance from the FQA boundary to periphery of a wafer of nominal dimensions

- **Equipment or Material Supplier**
 - the edge area of a wafer that we cannot guarantee performance of our products

- **Chip Manufacturer**
 - the edge area that has been abandoned or forbidden from normal process
Edge Portion

- EE (Edge Exclusion)
- Fixed Quality Area
- Radius of FQA

✓ As Wafer Diameter Increases, Edge Portion Decreases
Edge Area

- 1mm EE Reduction Means
 - 0.9% Area Increase of 450mm
 - 1% Yield Increase Effect

- No EE of 450mm Means
 - 2.7% Area Increase of 450mm
 - 6.2% Increase Effect of 300mm

✓ No 450mm Edge Exclusion Equals 6.2% Area Increase of 300mm
ITRS Roadmap History

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM % Pitch (nm)</td>
<td></td>
</tr>
<tr>
<td>MPU/ASIC 1 (M1) % Pitch (nm)</td>
<td></td>
</tr>
<tr>
<td>MPU Physical Gate Length (nm)</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>21</td>
<td>19</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>DRAM Total Chip Area (mm²)</td>
<td>88</td>
<td>139</td>
<td>110</td>
<td>74</td>
<td>117</td>
<td>93</td>
<td>74</td>
<td>117</td>
<td>74</td>
<td>117</td>
<td>93</td>
<td>74</td>
<td>117</td>
<td>93</td>
<td>74</td>
</tr>
<tr>
<td>DRAM Active Transistor Area (mm²)</td>
<td>23.1</td>
<td>36.2</td>
<td>29.5</td>
<td>23.1</td>
<td>36.4</td>
<td>29.1</td>
<td>23.1</td>
<td>36.0</td>
<td>29.1</td>
<td>23.1</td>
<td>36.7</td>
<td>29.6</td>
<td>25.1</td>
<td>36.7</td>
<td>29.1</td>
</tr>
<tr>
<td>MPU High-Performance Total Chip Area (mm²)</td>
<td>246</td>
<td>195</td>
<td>310</td>
</tr>
<tr>
<td>MPU High-Performance Active Transistor Area (mm²)</td>
<td>25.1</td>
<td>20.9</td>
<td>31.7</td>
</tr>
<tr>
<td>General Characteristics</td>
<td>ISO Chip Yield class A, B, C</td>
<td></td>
</tr>
<tr>
<td>Maximum Substrate Diameter (mm) - High-voltage Production</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>Edge exclusion (mm)</td>
<td>2</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Manufacturer solutions are known

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM % Pitch (nm)</td>
<td></td>
</tr>
<tr>
<td>MPU/ASIC 1 (M1) % Pitch (nm)</td>
<td></td>
</tr>
<tr>
<td>MPU Physical Gate Length (nm)</td>
<td>36</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>DRAM Total Chip Area (mm²)</td>
<td>36</td>
<td>29</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>DRAM Active Transistor Area (mm²)</td>
<td>16.7</td>
<td>16.1</td>
<td>13.8</td>
</tr>
<tr>
<td>General Characteristics</td>
<td>ISO Chip Yield</td>
<td></td>
</tr>
<tr>
<td>Maximum Substrate Diameter (mm) - High-voltage Production</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>Edge exclusion (mm)</td>
<td>2</td>
</tr>
</tbody>
</table>

Manufacturer solutions are NOT known

Roadmap on Edge Exclusion Looks Going Backward
Current SEMI M1 Spec

- Basic Specification for 300mm Wafers
 - Was Nominal Edge Exclusion: \(3\text{mm}\), in 2011
 - Modified to Guide for Specification as \(148\text{mm}\) of FQA radius

- Specified Requirements for 450mm Wafers
 - FQA radius: \(223\text{mm}\)
 - Nominal Edge Exclusion: \(2\text{mm}\)

✓ Edge Exclusion Decreased To 2mm, Still Open to Dispute

\[\text{SEMI Standard M1-0413, Table R1-1}\]
Rome Wasn’t Built In A Day

- **1.5mm Edge Exclusion**
 - Earns Additional 700mm²
 - 0.45% of Total 450mm Wafer
 - 1.03% of Total 300mm Wafer

- **Beyond 1.5mm?**
 - Periphery
 - Edge width 0.35mm
 - EE 1.5mm
 - 1.15mm
 - FQA
 - ~ 1mm ??

- Barrier on 1mm: EBR, CMP, Litho, …

- **1.5mm Of First Step Dreaming Zero Edge Exclusion**
Reduced Exclusion Might…

✓ Increase Wafer Yield by 1.6%

300mm Pentium 4 Processor wafer
(130nm)

※ Kevin Fisher, Wafer Edge Exclusion
1.5mm EE Impact On # Of Chips

- **Shot Layout Simulation**

 - Shot Size: 26 x 8 mm
 - EE: 1.5mm or 2.0mm

<table>
<thead>
<tr>
<th>item</th>
<th>2mm EE</th>
<th>1.5mm EE</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td># of full shots</td>
<td>684</td>
<td>688</td>
<td>+ 4</td>
</tr>
<tr>
<td># of partial shots</td>
<td>68</td>
<td>72</td>
<td>+ 4</td>
</tr>
<tr>
<td>sum</td>
<td>752</td>
<td>760</td>
<td>+ 8</td>
</tr>
</tbody>
</table>

- 4 Partial Shots May Be Newly Generated,
- 4 Partial Shots May Be Upgraded to Full Shots

- Changing EE From 2mm To 1.5mm May Increase 1% of # of Chips
Challenging Bottlenecks

- **Silicon Wafer Material**
 - *Silicon wafer edge flatness, roll off, roughness and etc.*

- **Metrology Capability & Reliability**
 - *Noise from edge boundary and optics limitation, beam size*

- **CMP Edge Removal Uniformity**
 - *Edge removal uniformity and removal rate decline comes from head limitation*

- **Photo Resist Edge Bead & Removal**
 - *Resist thickness uniformity controlling increased velocity and EBR clearance*
450mm Wafer Flatness

SFQR

- **SFQR Values**
 - Wafer Dependent
 - Usually Increase When EE Is Changed
 - From 2mm To 1.5mm
 - Wafer B Changed 22nm to 32nm
 - May Not Change
 - Wafer A Shows Similar SFQR

✓ 1.5mm EE May Not Make SFQR Worse
Edge Roll Off : ESFQR

- Significant ERO Changes Near Edge Region.
- SEMI M49 Nominal ESFQR Spec @ 1mm EE : 64 nm

※ Litho. Scanners require SFQR & ESFQR of the same magnitude in the printable radius (SEMICON Japan 2011).

✓ Edge Roll Off Is Challenging
Edge Roll Off: ZDD

- Defocus At Wafer Edge
- 450mm Wafer ZDD

- Defocus Variation Increases At EE > 3mm
- Wafer of Small ZDD Shows Best Distribution
- ZDD Depends on Wafers

- 450mm Wafer ZDD Shows Feasibility for Litho

† Takao Tamura et al, “Focus, Dynamics and Defectivity Performance At Wafer Edge in Immersion Lithography”, 2008
Edge Roughness Using AFM

- 450mm Bare Si Wafer Measured
- Scanned Area: 36um (6um x 6um)
- Roughness Increases At Edge

- No Significant Different Roughness Between 1.5mm & 2mm
Edge Metrology: Particle

- Particle Metrology Repeatability
 - Bare Si > 38nm, 20times
 - EE 1.0mm 95.55%
 - EE 1.5mm 95.55%
 - EE 2.0mm 95.52%
 - Total # of Particle Increases

- Current 450mm Particle Metrology Works At 1.5mm Edge

Specification: Repeatability shall be 98% or higher.

\[
\text{Repeatability(%) = \left(1 - \frac{\sigma}{\bar{X}}\right) \times 100}
\]

\[
\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

Xi: Defect count \quad \bar{X}: Average of defect counts \quad \sigma: Standard deviation
Edge Metrology: Ellipsometer

- **MSE & GOF of Thickness, LPCVD Poly Si**
 - MSE (Mean Squared Error) & GOF Values Are Stable At 1.5mm Edge
 - No Different N- or K- Value At Edge

- **N-Value & K-Value**
 - No Significant Difference Between 1.5mm & 2mm EE
Ellipsometer Variation Test

- **Variation 1.5mm vs. 2mm**
 - The Variation Is **NOT** Statistically Different

- **Variation 1mm vs. 2mm**
 - The Variation **IS** Statistically Different

- **Statistical Equivalence Between 1.5mm and 2mm EE**
Edge Metrology : XRF

- **Gauge R&R Test Method**
 - Cu Film Thickness with XRF
 - 1point @ 1.5 & 2mm edge
 - 50 times/day x 3days

- **Gauge R&R Test Result**
 - F Test Shows P-Value of 0.85
 - Two Distributions Are NOT Statistically Different

- XRF Has Equivalent Capability At 1.5mm & 2mm EE
Process Performance : CVD

- **PECVD SiN Thickness**

<table>
<thead>
<tr>
<th></th>
<th>2.0mm EE</th>
<th>1.5mm EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>682 Å</td>
<td>683 Å</td>
</tr>
<tr>
<td>Min</td>
<td>677 Å</td>
<td>676 Å</td>
</tr>
<tr>
<td>Max</td>
<td>690 Å</td>
<td>694 Å</td>
</tr>
<tr>
<td>Std D / %</td>
<td>3.20 Å / 0.47%</td>
<td>4.82 Å / 0.71%</td>
</tr>
</tbody>
</table>

- Edge Deposition Rate Slightly Goes Up

✓ PE-CVD Shows Feasibility Of 1.5mm EE Process
Process Performance: Metal

- TiN Thickness Per EE

<table>
<thead>
<tr>
<th>Thickness [Å]</th>
<th>1.0mm EE</th>
<th>1.5mm EE</th>
<th>2.0mm EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness [Å]</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Standard Dev. %</td>
<td>4.26 %</td>
<td>4.10 %</td>
<td>4.01 %</td>
</tr>
</tbody>
</table>

- Edge Deposition Rate Slightly Goes Down

- Metal Deposition Shows 1.5mm EE Feasibility
450mm Edge Bead Proposal

Immersion Trilayer Resist Stack

- Resist must fall on SiARC for adhesion & top coat must encapsulate resist.
- Wafer edge expose (WEE) of 1.5mm can be applied prior to develop.

✓ Trial To Get 1.5mm Edge Bead Process Has Been Started
Time Line For 1.5mm EE

- **Modification Of SEMI Standard**
 - M1 FQA Radius From 223mm To 223.5mm
 - Collaborating With SEMI Si Committee, PW TF, AWG TF and 450mm Wafer TF
 - Combining With Silicon Wafer Notch-less Activities
 - Focusing on 450mm, Possibility Of Extension Into 300mm

<table>
<thead>
<tr>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bring Up 1.5mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMI Standard Meeting</td>
<td>SEMI Standard Meeting</td>
<td>SEMI Standard Meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>SEMICON West</td>
<td>SEMICON Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Basic Evaluation**
 - Metrology & Material

- **Advanced Assessment**
 - Bottle Neck Process Feasibility

- **Official Proposal**
 - SEMI Standard Meeting
 - SEMICON West

- **Submit SNARF**
 - SEMI Standard Meeting
 - SEMI 7th Cycle

- **Ballot Adjudication**
 - SEMI Si Committee
 - SEMICON Japan
Summary

- **Purpose**
 - To Maximize Cost Effect of 450mm Transition By Getting More Area

- **Material**
 - Current Wafer Edge Roll Off Status Shows Feasibility of 1.5mm EE

- **Metrology**
 - Basic 450mm Metrology Can Support To Develop 1.5 EE Equipment & Process

- **Process Equipment**
 - Some Process Show Feasibility, Some Need Improvement

- **Plan**
 - Modification of SEMI Standard M1 EE By The End Of 2013
Special Thanks To

- **G450C Metrology Team**
 - Dr. Rand Cottle, Mr. Jeffrey Lee, Ms. Katherine Sieg, Mr. Nithin Yathapu

- **SEMI**
 - Mr. James Amano

- **SEMI Standard International Advanced Wafer Geometry TF**
 - Dr. Jaydeep Sinha

- **SEMI Standard International 450mm Wafer TF**
 - Dr. Michael Goldstein

- **SEMI Standard International Polished Wafer TF**
 - Dr. Murray Bullis / Dr. Noel Poduje
Thank you.