Industry Collaboration for Cost Effective Manufacturing

Steve Johnston, Ph.D.
Director, External Programs and Technology Strategy
Technology Manufacturing Engineering
Intel Corporation
Growth Requires Advancing Multiple Areas Simultaneously

Technology
- Continuing to Push Ahead
- **32 nm** 2009
- **22 nm** 2011
- **14 nm** 2013
- **10 nm** 2015+
- **Manufacturing**
- **Development**
- **Research**

Manufacturing Efficiency

Sustainability
- Intel's Approach to Eco-Technology
- Energy Efficient Performance
- Design for the Environment
- Policy + Industry
- Technology For Environment

Wafer Size Transition
- Image source: Extremetech, Google

Complexities are increasing but leadership is rewarded
Technology Complexity is Accelerating Costs

Leading Edge Fab Cost: +575%

Process Development Cost: +450%

Chip Design Cost: +733%

Source: Global Foundries, BofA Merrill Lynch Global Research Estimates
EUV and 450mm Reduce Technology Driven Wafer Cost Increase to Enable Continued Growth

Flawless and synchronized execution across the industry is required to realize benefits.
The Challenges of EUV

Tool
- **Source** – Availability, Power
- **Scanner/Track** – Availability, Defects
- **Metrology** – Fast detection of small reticle defects

Reticle
- **Defectivity** – Killer defect impact >> wafer process defect impact

Resists
- **Patterning requirements** – Resolution, LWR/Dose
- **Outgassing** – TPT, Scanner requirements

EUV HVM depends on manufacturability across all of these areas.
450mm Technical Challenges

Die to die matching
- Match material/feature characteristics
- Match die level e-test results
- Match all film variability

450mm scalar targets
- Optimized Throughput/m² ≥ 300mm
- Processing cost per wafer ≤ 300mm
- Environmental foot print ≤ 300mm

Intelligent scale-up requires close synchronization with 300mm HW innovation and technology roadmaps

Innovative Design Improvements
- Match material/feature characteristics
- Match die level e-test results
- Match all film variability

Best In Class Equipment
- Uniform plasma density
- Improve thermal control
- Better thickness control
- Optimized pumping
- Film stress management

- Optimize vertical space
- Optimized pumping
- Platform innovations
- Common modules/parts
- Green friendly materials
- Max. recycle/reuse
- Smart idling
Global Cooperation for Efficient 450mm Development

World's First 450mm Patterned Full Wafer
(ISS US, January 2013)
Industry growth depends on technology advancement implemented in efficient, sustainable and cost-effective manufacturing.

EUV and 450mm require close industry collaboration across many levels & in many forms.

EUV is progressing -- source power and reticle defectivity remain significant concerns.

450mm global collaboration is advancing industry readiness in a cost-effective manner.
The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "plans," "believes," "seeks," "estimates," "may," "will," "should" and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company's expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other disruptions affecting customers; customer acceptance of Intel's and competitors’ products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. Intel is in the process of transitioning to its next generation of products on 22nm process technology, and there could be execution and timing issues associated with these changes, including products defects and errata and lower than anticipated manufacturing yields. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; product mix and pricing; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. The majority of Intel’s non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management's plans with respect to Intel’s investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel’s SEC filings, including the annual report on Form 10-K for the fiscal year ended December 31, 2012.