Agenda

In this presentation I will show:

- K&S company overview
 - What solutions we offer for the Semiconductor Assembly Equipment market
 - European Innovations and competitive manufacturing
 - Technological Highlight
 - What makes us different, What are we especially good in
 - How does this help to stay in Europe

- K&S Hybrid machine
 - Single machine solution for combined Flip Chip and SMD assembly

- Q&A
About Kulicke & Soffa (K&S)

Global Technology & Market Leader in Semiconductor Assembly Equipment

- Founded in the US in 1951 and incorporated in 1956
- Publicly traded since 1971 in NASDAQ: KLIC
- Strong presence in Asia with over 80% sales in Asia
- HQ in Singapore since 2010
- Acquisition of Assembleon January 9, 2015, Assembleon becomes a business line of K&S
- Over 2500 employees
Semiconductor Assembly Equipment

<table>
<thead>
<tr>
<th>Semiconductor</th>
<th>Hybrid</th>
<th>Beyond Semi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Bonding</td>
<td>Advanced Packaging</td>
<td>Advanced SMT</td>
</tr>
<tr>
<td>Ball Bonding</td>
<td>WLP</td>
<td>Modules</td>
</tr>
<tr>
<td>Wedge Bonding</td>
<td>FOWLP</td>
<td>High-End SMT</td>
</tr>
<tr>
<td>Wafer Level Bonding</td>
<td>PoP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Embedded Die</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIP</td>
<td></td>
</tr>
</tbody>
</table>

- **Advanced Packaging:**
 - Flip Chip
 - WLP
 - FOWLP
 - PoP
 - Embedded Die
 - SIP

- **Technology Innovation Solutions**
Global Presence

Switzerland, Berg
Advanced Packaging and
Software R&D

Veldhoven, Netherlands
Advanced Packaging,
Advanced SMT, R&D and
Manufacturing

Brazil, Brazil
Advanced Packaging
R&D

USA, Fort Washington (PA)
Equipment R&D
Advanced Packaging R&D

USA, Santa Ana (CA)
Wedge Bonder R&D

China, Suzhou
Bonding Tools Manufacturing
Blades R&D, Manufacturing
Software R&D, Advanced
Packaging, Advanced SMT

Singapore (Corporate HQ)
Ball Bonder, Wedge Bonder,
Wafer-Level Bonder,
Advanced Packaging, Advanced SMT,
R&D and Manufacturing

K&S Manufacturing Plant
K&S R&D Center
K&S Sales/Service Office
Two Advanced Packaging BLs

AP (Local Reflow) BL

Thermo-compression

K&S APAMA

AP (Mass Reflow) BL

WLP/FOWLP
Flip Chip
Embedded Die
Module
Package-on-Package
System-in-Package

K&S HYBRiD

Reflow

Bonded Die

Bonded Die Or Chip
K&S Hybrid Machine

- Most advanced tool for applications combining FC’s & SMD’s
- Ideal solution for:
 - SIP, Modules, MEMS, WLP, FOWLP, POP, etc.
- Best cost per unit ratio (total unit, FC & passives combined)
- Different transport systems for regular PCB’s, wafers or panels up to 800 x 457, Vacuum Transport, Carrier transport, lead frames
- Largest component range from 0.2x0.2mm – 45x45mm
- Scalability within one machine
 - UPH: up to max 15K for FC or > 120 K for SMD’s or any combination
 - Accuracy: Between 25µm & 7µm creating optimum combination of accuracy & UPH
How does this help to stay in Europe

Competitive Manufacturing:

- Cost of manufacturing is mainly defined by:
 - Cost of equipment, which is about the same anywhere in the world
 - Operational cost
 - Majority of the cost is related to labor and energy
 - Efficiency of manufacturing (output vs cost)

- To improve the cost per unit:
 - Minimize the cost
 - Minimize the energy consumption
 - Minimize the need for operators
 - Maximize the throughput of a production line
 - Maximize manufacturing line efficiency
Minimize the energy consumption

“The greenest pick and place solution”

<table>
<thead>
<tr>
<th>Machine type</th>
<th>K&S Hybrid</th>
<th>Comp. A</th>
<th>Comp. B</th>
<th>Comp. C</th>
<th>Comp. D</th>
<th>Comp. E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual energy needed</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
</tr>
<tr>
<td>for rework [kWh]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual energy needed</td>
<td>100000</td>
<td>100000</td>
<td>100000</td>
<td>100000</td>
<td>100000</td>
<td>100000</td>
</tr>
<tr>
<td>for airco [kWh]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual compressed</td>
<td>150000</td>
<td>150000</td>
<td>150000</td>
<td>150000</td>
<td>150000</td>
<td>150000</td>
</tr>
<tr>
<td>air energy consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[kWh]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual energy</td>
<td>200000</td>
<td>200000</td>
<td>200000</td>
<td>200000</td>
<td>200000</td>
<td>200000</td>
</tr>
<tr>
<td>consumption (machine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[kWh]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Based on 100K CPH in a year
Maximize manufacturing line efficiency

SIP Assembly Process Flow (Flip Chip) – traditional (15 steps)

SMT department
- Stencil Paste
 - Place SMD
 - reflow
 - Tray Load

BE department
- Tray UnLoad
 - Flip Chip attach
 - Clean
 - reflow
 - Cure
 - Laser Mark
 - Cure
 - Mold
 - Plasma Clean
 - Singulation
 - Tray Load for Test
 - Tray Load
Maximize manufacturing line efficiency
SIP Assembly Process Flow (Flip Chip) – NEW (12 steps)

Stencil Paste → Place SMD → Flip Chip attach → Reflow → Clean

Laser Mark → Cure → Mold → Plasma Clean → Cure

Singulation → Tray Load for Test

Both activities in one department
Maximize manufacturing line efficiency
Wafer Level Packaging

Combining Flip Chips and Passives onto 300 mm wafers

- Placement of Flip Chip’s fed from wafer feeding and passives like 0201, 01005 or 008004 (0201metric) fed from tape feeders and onto a 12” wafer frame

- Example Project:
 - > 900 circuits/wafer, each with 1 FC & 28 passives: Total > 26 K placements / wafer
Decreasing the cost of manufacturing

Traditional manufacturing
2 individual process steps

- FC’s bonded by Semicon machines
 - High accuracy (< 10 μ)
 - UPH: max 5 K UPH
 - Feeding from wafer
 - Capable of bonding thin dies
 - High cost per unit

- Passives placed by SMD machines
 - Accuracy around 25 – 50 μ
 - UPH: > 100 K UPH possible
 - Feeding from tape and reel
 - Low cost per placement

K&S Hybrid machine
Single machine solution

- One modular system combining FC bonding and passive placement
 - Accuracy up to 7 μ for FC placement
 - UPH up to 15 K for FC’s or 120 K for passives or any combination
 - Feeding from wafer, waffle pack, JEDEC tray, tape and reel, etc
 - Full controlled placement force for low profile passives

K&S Hybrid, best of both worlds:
- High end, fast FC bonding
- Low cost passive placement
Decreasing the cost of manufacturing

K&S Hybrid, single machine solution for SMT + Flip Chip assembly:

- Less material handling
- Less operators
- Less (cleanroom) floor space
- Less training
- Less maintenance
- Less Vendors
- Less process steps
- Lower capital investment
- Lower running cost
- Higher Efficiency
- Higher intrinsic quality
- Single pass reflow / curing

K&S Hybrid, best of both worlds:
- High end, fast FC bonding
- Low cost passive placement
This PowerPoint presentation and all of its contents are protected under International and United States Copyright laws. Any reproduction or use of all or any part of this presentation without the express written consent of K&S is prohibited.