R&D partnerships by adixen Vacuum Products

Catherine Le Guet
Agenda

- Adixen Vacuum Products and Pfeiffer Vacuum Group
- Our involvement in collaborative R&D projects
- Benefits from collaborative R&D projects
adixen Vacuum Products at a glance

- Expert in vacuum technology, leak detection & contamination management
- Sixty years of experience developing innovative products for the semiconductor, instrumentation, R&D and industrial markets
- 560 employees in Annecy, France
- Part of Pfeiffer Vacuum group since 2011
 - For over 120 years has set the standards in vacuum technology
 - Leading supplier for vacuum solutions for evacuation, measuring and analyzing vacuum
adixen Vacuum Products

Vacuum components

Instruments

Contamination Management Solutions
Pfeiffer locations and employees worldwide

- **The Americas**: 147
- **Europe and Africa**: 1,500
- **Asia-Pacific**: 590

Employees total: **2,237**
Pfeiffer vacuum production worldwide

- Asslar/Germany
- Cluj/Romania
- Annecy/France
- Asan/Korea
adixen involvement in collaborative R&D projects
Our involvement in collaborative R&D projects

- Which projects?
 - adixen Vacuum Products participates in numerous national and European clusters/projects
 - Europeans Clusters: CATRENE, Eniac / Aeneas, FP7
 - French national/Regional competitiveness clusters: Minalogic, Arve Industries and Tenerrdis

- Partnership
 - with highly qualified laboratories & many recognized industrial partners

- Domains of interests
 - Partners in semiconductor, PV & LEDs applications Projects
Example 1: EXEPT /

- EXtreme UV lithography Entry Point Technology development within the framework of the CATRENE Program.

- Goal: to develop technologies, tool & infrastructures components as required for high volume EUV lithography for 22nm node in 2012.

- Partners:
 - ASML
 - Media Lario Technologies
 - Fraunhofer IISB
 - XTREME technologies
 - FOM Foundation for Fundamental Research on Matter
 - SAFRAN Sagem
 - ZEISS
 - imec
 - DMS
 - SUSS MicroTec
 - HAMATECH APE
 - Advanced Mask Technology Center
 - CERN
 - USM
 - AIX-TEC
 - Aneas
EUV lithography constraints: 13.5 nm wavelength

- 13.5 nm Wavelength: optical path has to be in vacuum, no refractive optics but mirrors
- In the EUV tool, outgasing (H2O, hydrocarbons) can damage optics. EUV mask outgasing has to be minimized to avoid any reflectivity loss.
EUV lithography constraints: 13.5 nm wavelength

- EUV mask is a mirror and is pellicle less.
 - to be cleaned regularly to avoid reflectivity loss of MoSi multilayers due to contamination
 - Mask cleaning tool must be integrated in the fab
- EUV mask (multilayer) is very sensitive and heating temperature lower than 70°C, temperature uniformity better than +/- 5°C;
 - hot plate cannot be used for drying
Collaboration inside Exept project

EUV photomask domains:
- Ultra cleanliness needed (water residues, carbons...)
- Fragile photomask reflective layer: no high temperature, hot plate cannot be used
- No vacuum in current processes photomask cleaning process

Silicon wafer domains
- Vacuum process demonstrated to reduce AMC and to improve yield

Combine both expertises with vacuum process in photomask environment
- For EUV masks dehydration
- With constraints of cleanliness environment

Adixen dehydration tool integrated in HamaTech-Suss Mask Track Pro
Example 2: SEAL: Semiconductor Equipment Assessment Leveraging Innovation

- The European project SEAL (Semiconductor Equipment Assessment Leveraging Innovation) was successfully launched to promote European industry of the semiconductor, in a global market.

- Partners:
Advanced vacuum wafer drying for thermal laser separation dicing

- Thermal laser separation process for wafer dicing
 - Water residues/droplets have to be dried away from the dice and frame
- Process time constraints:
 - today drying done at atmospheric pressure
Advanced vacuum wafer drying for thermal laser separation dicing

- Vacuum purge demonstrated to reduce AMC on wafer substrates (fluor..)

Vacuum Purge process

- Step 1: Vaporization of water droplets
- Step 2: Vapor evacuation
Advanced vacuum wafer drying for thermal laser separation dicing

- Process validation in laboratory and fab conditions
 - Efficient and quick process

![Graph showing drying time under different conditions]

Process time

Vacuum purge
Advanced vacuum wafer drying for thermal laser separation dicing

Thermal laser separation process for wafer dicing
Water residues as side effects/time constraints

Vacuum purge demonstrated to reduce AMC on wafer substrates (fluor..)

Advanced vacuum wafer drying for thermal laser separation dicing: efficient and quick process

Fraunhofer IISB
JENOPTIK JENA
Benefits from collaborative R&D projects
A fruitful partnership for a dynamical and enhanced R&D

Strategic partnership

Innovation

Funding

Business & employment
1/ Innovation

- Access to complementary knowledge / technologies:
 - Materials, microelectronic processes, plasma sciences..
 - High level laboratories

- Excellence Network
 - Training, access to experts
 - Wide scientific network: ITN “SPAM” project: contamination in Lithography area

- Opportunities for new applications
 - Example: (EUV) lithography, PV, LEDs, pharmaceutical..
2/ Strategic partnership

- Collaboration with End Users
 - Access to customer specifications: concept adapted to customer needs
 - Win/win partnership to test/qualify/demonstrate our developments:
 - Access to platform/access to data/access to latest innovation/access to fab
 - Information on constraints/specifications of customers of our customers!
- Collaboration with Equipment manufacturers
 - New potential business opportunities
- Easier R&D collaboration inside whole project consortium
 - IP management thanks to administrative organization for the project including consortium agreement & confidential agreements
- Communication
 - Support innovative leadership and image
- Networking
3/ Funding

- Reduce risks for advanced R&D
 - Financial support:
 - To share technological challenges and dev. with partners

- Support R&D stability
 - By reducing influence of market cycles

- Allows acceleration of product development
Conclusion

- Collaborative projects are full benefit for the development of innovation
- Further to funding, they offer different opportunities from strategic partnership to network building
- Allow the development of innovative products adapted to customer needs
- Can give access to new domain of interest and new markets
Acknowledgment

- To all European and national clusters & authorities
Thank you for your attention

Contacts:

 catherine.lequet@adixen.fr
 magali.davenet@adixen.fr