Enabling integrated active photonics with transfer printing

Brian Corbett

Tyndall National Institute, University College Cork, IRELAND
Outline

• Opportunities for photonics
• Integration strategy
• Examples of transfer printing
• Scaling with pilot line
• Outlook
Opportunities for photonics
Opportunities for photonics

- Highly versatile to cover any wavelength from UV to NIR
- Critical element in many everyday applications
 - Communications, illumination, sensing, power, medical,..
 - Only solution for high bandwidth, high density interconnects
- Expanding applications
 - Data centres (communication and storage)
 - Backhaul for 5G
 - LIDAR
- Key technology for Europe
 - Optical components and systems
 - €7.8B which is 32% of the global market

Optech Consulting, Market Research Study Photonics 2017; photonics21.org
Challenges for photonics

• Applications with high volume potential demand low-cost
 – Photonic devices individually packaged comprising 70% of cost
• Applications need sources, waveguiding, modulating, sensing, etc.
• Photonic subsystem
 – Multiplicity of materials and device structures for optimum performance
• Need an effective integration strategy to make un-compromised photonic circuits
• Is there an equivalent platform as CMOS for electronics?
Platforms for photonics (EU)

- InP
- Silicon Photonics (CEA-LETI; imec,..)
- SiN (LioniX, imec)
- Mid infra-red
- Packaging
InP materials for 1550nm light

• Wafer diameter typically 75mm-100mm
 – Quality down to material science and engineering
• No critical imperative to improve (invest)
• Why?
 – One 75mm wafer can deliver ~20,000 lasers
 – Each laser can deliver 10Gbps
 → 200 Tbps available per wafer
• Size mismatch with silicon wafers and other platforms
Integration strategy
Vision for integration strategy

- Produce the optimum components in the most appropriate environment and then heterogeneously integrate with the platform in parallel and scalable manner.

III-V device fabrication

Specialist material preparation

Sensor device fabrication

Platform fabrication (e.g. Si photonics)

Heterogeneously Integrate

Complete subsystem
Transfer print integration

- **Heterogeneous integration** by transfer of devices (or materials) from a native substrate to a chosen new substrate

- Combination of:
 - Inking and printing
 - Substrate separation

- Breakthrough* was the registration of devices and the use of massively parallel, deterministic transfer of the devices

E. Menard, R. G. Nuzzo, and J. A. Rogers, Appl. Phys. Lett. 86, 093507 (2005).
Transfer print steps

Preparation of devices

Pickup of devices

Transfer of devices

Printing devices
Transfer print implementation

• Tools, processes and patent portfolio established by X-Celeprint
• Based at Tyndall and North Carolina
Advantages for micro-Transfer Printing

• Massively parallel (>10,000 devices transferred per 45s cycle)
• Position tolerance of ±1.5μm at 3σ
• Different types of devices or materials can be printed close to each other
• Efficient use of source materials
• Requirements
 – receiving location is locally flat (provide by polymer adhesive)
 – prepare devices with high contrast alignment marks
 – connect up devices
Examples of transfer printing
Example 1: GaAs lasers on ceramic wafers

- Ceramic wafer platform used to produce read-write heads for hard-drive magnetic recording
 - ~5M ‘heads’ produced per day worldwide
- A laser is needed to implement Heat Assisted Magnetic Recording (HAMR) but at minimal additional cost

http://blog.seagate.com/business/seagate-continues-to-lead-as-hamr-technology-advances/
Integrate laser directly on head

- Print coupons of laser material to target
- Post-process into lasers on new substrate

Example 2: InP lasers for Silicon Photonics

• Hybrid circuits based on Si Photonics
 – Complexity growing massively on 200mm wafers
 – Pilot lines at imec, CEA-LETI, AIM, A*STAR-IME,
 – Multiple commercial foundries

• Clear solution for manufacturing photonic integrated circuits in a similar manner to electronic circuits

• Crux – how to include amplification
 – Laser as power source (external)
 – Laser as oscillator (on chip)
Example 2: InP lasers for Silicon Photonics

- Lasers can be integrated by:
 - evanescent coupling
 - butt coupling
Transfer print project (TOP HIT)

- H2020 EU funded project in Smart System Integration

Transfer-print OPERations for Heterogeneous INtegration (TOP-HIT)

www.tophit-ssi.eu
InP laser preparation

Tethered lasers on InP substrate

Tether

Bottom of released coupon

Lasers on Si substrate

Laser on Si

Laser cross-section

1550nm laser integration

- 1550nm laser integration
- Buried Oxide
- Silicon substrate
- Silicon device layer
- Oxide over-cladding
- III-V laser
- Laser
- Si waveguide
- Laser Si photonics facet
- Out-coupled spectrum
- Waveguide modes
- Aligned laser
- SEMICON EUROPA
- 14-17 NOV 2017 MUNICH GERMANY
Integrating silicon electronics

- Circuits design on X-FAB foundry process

Positional accuracy better than ±1μm in x and y

Silicon IC printed on a functional substrate
Example 3: Display concept

Plastic or glass substrate:
Light, flexible, robust

R/G/B µLEDs:
Low power consumption and bright, defect tolerance

µICs:
CMOS performance, embedded memory and novel design concepts
* the printed µIC should control a cluster of pixels

Transparent
* Fine and/or transparent wiring level

Room to do more!
The sparsely integrated µLEDs allow for new functions: µ-sensors, power harvest, gesture sense, image capture, RF, etc...

Passive Matrix MicroLED Display

8 x 15 µm MicroLED

30,000 MicroLEDs on glass

Flexible Plastic Micro LED Displays

- 100 BBB x 100 pixels
- (3 blue LEDs per pixel)
- 100 µm pixel
- 10,000 posts on stamp
- 3 print operations

Prototype display with microscale 180nm CMOS LED drivers within each pixel.

six µ-iLEDs and two µ-ICs in each pixel.
412 transistors per pixel; 1.8V & 5V, 180 nm CMOS.
Digital row and column inputs; current set in µ-ICs.

Scaling with pilot line
Making the technology foundry accessible

• Transfer the µTP-technology to an industrial environment
 – Bridging the “Valley-of-Death” to industrialization

• µTP pilot line in manufacturing environment for open access
 – Development of design rules (DR) and its implementation in Process-Design-Kits (PDK)

• Development of processes for heterogeneous system integration for CMOS and MEMS wafers
 – Realization of processes for source wafer preparation, transfer printing and post-processing on 200mm silicon wafers

MICROPRINCE Grant Agreement No. 737465
Microprince project

- Technology demonstration for five defined target applications for magnetic and optical sensing and photonic systems

WP7: Dissemination, Communication, Exploitation and Standardization (Lead: IMWS)

WP2: Micro-Transfer-Printing for High Sensitivity Magnetic Sensors
 (Lead: MLX TLO)

WP3: Micro-Transfer-Printing for Optical Sensors
 (Lead: XFAB)

WP4: Micro-Transfer-Printing for Silicon Photonics
 (Lead: HUA)

WP5: Micro-Transfer-Printing of LED Devices
 (Lead: MLX DE)

WP6: Micro-Transfer-Printing for Biomedical Implant Applications
 (Lead: IMEC)

Strengthen European Electronics and MEMS Industry

Key Application Areas
- Smart Mobility
- Smart Society
- Smart Energy
- Smart Health
- Smart Production

WP1: Design and installation of the µTP pilot line (Lead: XMIF)

- Specification, set-up and installation of the pilot line for high volume production in a MEMS foundry environment
- Development and providing of general process for manufacturing

This work is partially funded by the projects MICROPRINCE. The project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737465. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation program and Germany, Belgium, Ireland.
The future with micro transfer printing

• Enabling low-cost, user-designed photonic sub-systems
 – No need to be an expert in semiconductor physics or device technology
 – Verification software
• Applicability and versatility of photonics maintained
• Compatibility with existing platforms
• Photonics not a stand-alone technology
• Vast range of new opportunities for photonics by using transfer printing
Thanks to you for listening our collaborators our funders