CMOS based microdisplays, imager and sensors enhanced by OLED/OPD integration

Bernd Richter, Philipp Wartenberg, Stephan Brenner, Gerd Bunk, Steffen Ulbricht, Martin Rolle, Dirk Schlebusch, Judith Baumgarten, Peter König, Uwe Vogel, Fraunhofer FEP, Germany
Outline

Introduction Fraunhofer FEP

OLED Microdisplays
- Motivation
- Key Technology: OLED-on-Silicon
- Applications

Bidirectional Microdisplay
- Introduction
- Technology
- Applications

Platform for Enhanced Image Sensors

Conclusion
Outline

Introduction **Fraunhofer FEP**

OLED Microdisplays
- Motivation
- Key Technology: OLED-on-Silicon
- Applications

Bidirectional Microdisplay
- Introduction
- Technology
- Applications

Platform for Enhanced Image Sensors

Conclusion
Who we are – Fraunhofer FEP: Facts and Figures

- Employees: 189
- Total budget: 24.3 M€
- Industry returns: 7.4 M€
- Public funding: 8.6 M€
- Investments: 1.5 M€

(April 2017)

Director

- Prof. Dr. Volker Kirchhoff

Locations in Dresden

Core Competencies

- ELECTRON BEAM TECHNOLOGY
- PLASMA-ACTIVATED HIGH-RATE DEPOSITION
- SPUTTERING TECHNOLOGY
- HIGH-RATE PECVD
- TECHNOLOGIES FOR ORGANIC ELECTRONICS
- IC AND SYSTEM DESIGN
Our Focus: Device Development, Prototyping and Manufacturing

Software development, e.g. eye-tracking

Electronics and system design

IC Design

OLED Design

OLED-on-Silicon post-processing

Technical Consulting

Test

Software development, e.g. eye-tracking

Electronics and system design

IC Design

OLED Design

OLED-on-Silicon post-processing

Technical Consulting

Test
Outline

Introduction Fraunhofer FEP

OLED Microdisplays
 • Motivation
 • Key Technology: OLED-on-Silicon
 • Applications

Bidirectional Microdisplay
 • Introduction
 • Technology
 • Applications

Platform for Enhanced Image Sensors

Conclusion
Motivation for OLED-Microdisplays: Data Glasses

Microdisplays
Introduction to OLED-Microdisplays

OLED Microdisplays
- High resolution, tiny screen size <1"
- Self-emissive display
- No add. illumination → simplified optics
- High contrast >10’000 : 1

Monolithic OLED Integration
- Highly efficient light source
- All colors, white, NIR, UV

Silicon Backplane
- Precise structures, high pixel density, typ. 1000 – 3000 dpi
- System-on-Chip, integration of electronics, driving and sensors

⇒ Ideal image source for AR/VR and electronic viewfinders
OLED-Microdisplays
Made in Germany

Fraunhofer FEP

- Design and manufacturing of OLED microdisplays
- Based on customer order, or within publicly funded or internal projects
- More than 10 years experience in various concepts and applications
- Sophisticated concept for high resolution microdisplays
- Unique position: Bidirectional microdisplays
- Novel concept for ultra-low-power displays
- Upcoming Evaluation Kit for HD+

device selection: 2007 - 2017

- 1st German OLED microdisplay
- QVGA analog concept
- VGA digital concept
- SVGA mixed concept
- 304x256 ultra-low-power
- WUXGA 1920x1200 mixed concept
Use-Case 1: Full Video Display

Key Applications
- AR, VR, electronic viewfinders

Typical target for OLED microdisplays
- Higher resolution (720p, HD, 4k…)
- Smaller pixels (chip size…)
- Higher framerates (60Hz…120Hz)
- More functions…

Latest Development
- LOMID Project
 - 1920x1200, 1”
 - High framerate for VR
 - Improved VR optics

Example how the form factor will be improved by using LIM’s optics.
Use-Case 2: Ultra-Low-Power-Displays

Key Applications
- AR in Industry 4.0, mobile navigation, logistics, sports...

Main Requirements
- Small, light, no heat, long battery life

New Concept
- Reduce content, resolution and refresh rate
- Static memory inside the pixels → No refresh
- Free addressable pixels → Smart image update
- Simple serial interface → Low pin-count

Result
- Dramatically reduced power consumption 😊
- Long battery run time 😊
- Low number of external components 😊
- Lightweight and small sized system 😊
Summary

<table>
<thead>
<tr>
<th>Full Video Displays</th>
<th>Information Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>High resolution (720p, HD, 4k…)</td>
<td>Medium resolution (QVGA…VGA)</td>
</tr>
<tr>
<td>High framerate (60Hz…120Hz)</td>
<td>Low framerate (0Hz…30Hz)</td>
</tr>
<tr>
<td>Medium power</td>
<td>Ultra-low power</td>
</tr>
<tr>
<td>Complex System</td>
<td>Simple system</td>
</tr>
</tbody>
</table>

Choose the right display and system concept according to application
Outline

Introduction Fraunhofer FEP

OLED Microdisplays
• Motivation
• Key Technology: OLED-on-Silicon
• Applications

Bidirectional Microdisplay
• Introduction
• Technology
• Applications

Platform for Enhanced Image Sensors

Conclusion
Introduction: **Bidirectional OLED Microdisplays**

OLED microdisplay with embedded image sensor → **intelligent** microdisplay
Technology: **Bidirectional OLED Microdisplays**

- CMOS top metal defines OLED pixel structure
- Si-photodiode
- Light source
- Light detector

OLED-on-Silicon: cross-section with unpatterned OLED on top
Use Case 1: Interactive Data Glasses

→ Bidirectional OLED microdisplay
→ Added functionality: Eye-Tracking
Use Case 2: Bidirectional Microdisplays as Sensor

→ Example: Optical fingerprint sensor.

First prototype

▪ **OLED display:**
 ▪ Controlled illumination
 ▪ Outside sensor-mode normal display

▪ **Embedded image sensor:**
 ▪ Optical fingerprint sensor
 ▪ 1600 dpi resolution (FBI-standard is 500 dpi)
 ▪ Detection of 3rd level features of identification

Further applications

▪ Optical stimulation and detection of biomarkers, cells etc. in a compact form at high resolution
Outline

Introduction Fraunhofer FEP

OLED Microdisplays
- Motivation
- Key Technology: OLED-on-Silicon
- Applications

Bidirectional Microdisplay
- Introduction
- Technology
- Applications

Platform for Enhanced Image Sensors

Conclusion
Motivation for Enhanced Imagers

SWIR - Short Wave Infrared

- Inspection for semiconductors, food ...
- Security and surveillance vision
- Machine and automotive vision

Hyperspectral Imaging

- Precision Farming

SWIR Spectroscopy

→ w/o III-V / InGaAs ! ($)
Technology: **Organic Detector on Silicon**

OPD-on-Silicon: Simplified cross-section.

- CMOS top metall defines pixel structure
- monolithic integration of organic photodiodes on top of silicon wafers
- interconnection layers
- active CMOS devices
- cover glass
- adhesive
- thin film encapsulation
- transparent electrode
- organic photodiode
- CMOS top metal
Image Sensors with Enhanced Spectral Behavior

Development Target
- Extended sensitivity vs. Si-imagers
- Significant lower costs vs. hybrid III-V on Si-imagers
- Organic detector on Si-backplane (OPD-on-Si)
- Adjustable wavelength, spectral width, ...
- High fill factor, monolithic integration

Current Status
- Readout-ASIC designed and tested
- SVGA image sensor platform available

Platform allows to perform
- Material Evaluation on 200 mm wafers
- Customer specific material / stack development
- Initial tests without NRE costs for new silicon chip

Mid term target for future R&D
- Extension of wavelength and hyperspectral imaging
Conclusion

OLED-on-Silicon
- Well suited technology for microdisplays and sensors
- Typical application for OLED microdisplays:
 - Image source for AR/VR, electronic viewfinders
 - Optical sensors
- Wide range
 - from HD to bidirectional up to ultra-low-power
→ The right microdisplay for each application.
→ Evaluation Kits available!

Advanced Imagers
- 1st results of OPD-imager presented
- Readout ASIC available for customer specific OPD development
What We Offer

- Prototyping
 - Idea
 - Concept
 - Schematic
 - Development
 - Simulation
 - Layout
 - Manufacturing
 - Start up and Test
 - Packaging and Assembly

Volume production with external manufacturing partners

Small Series

providing all-over process flow
Thank you!

Contact
Fraunhofer FEP
Bernd Richter
Head of Department Organic Microelectronic Devices
bernd.richter@fep.fraunhofer.de
+49-351-8823-285

Visit our booth to see our demos!

Silicon Saxony Joint Booth
Hall B1-416

Work was in parts sponsored by
- Federal Ministry for Economic Affairs and Energy of the German government (BMWi) 01MD16008C “Glass@Service”
- European Commission within the HYPOLED project (High-Performance OLED-Microdisplays for Mobile Multimedia HMD and Projection Applications, ICT-2007.3.2-217067), LOMID (“Large-area cost-efficient OLED microdisplays and their application”) European Union’s Horizon 2020 research and innovation programme under grant agreement No 644101.
- Federal Ministry for Education and Research of the German government (Bundesministerium für Bildung und Forschung), BMBF 01 BK 916-919, 16SV2283/“ZOOM”, 16SV3682/“ISEMO”, 16SV5036 “NIR-OLED”
- Sächsische Aufbaubank (SAB) of the State of Saxony (11107/1733 “A18HVMOS” & 100070897 “Cool Projector”)
- Fraunhofer Internal Programs “iSTAR” Grant No. WISA 817 805, “3D Signage” Grant No. MAVO 823279, “OLITH” Grant No. ATTRACT 162-600032

Thanks to the complete team at Fraunhofer FEP!